Long-Term Study on Landscape Irrigation Using Household Graywater — Experimental Study

INTERIM REPORT

Co-published by
The Water Environment Research Foundation, a not-for-profit organization, funds and manages water quality research for its subscribers through a diverse public-private partnership between municipal utilities, corporations, academia, industry, and the federal government. WERF subscribers include municipal and regional water and wastewater utilities, industrial corporations, environmental engineering firms, and others that share a commitment to cost-effective water quality solutions. WERF is dedicated to advancing science and technology addressing water quality issues as they impact water resources, the atmosphere, the lands, and quality of life.

For more information, contact: Water Environment Research Foundation
635 Slaters Lane, Suite G-110 Alexandria, VA 22314-1177
Tel: (571) 384-2100 Fax: (703) 299-0742 www.werf.org werf@werf.org

The American Cleaning Institute (ACI) is the home of the U.S. Cleaning Product Industries™, representing manufacturers of household, industrial and institutional cleaning products; their ingredients and finished packaging; oleochemical producers; and chemical distributors to the cleaning product industry. Established in 1926, ACI is dedicated to advancing public understanding of the safety and benefits of cleaning products and protecting the ability of its members to formulate products that best meet consumer needs. ACI serves both its members and the public by developing and sharing information about industry products with the technical community, policy makers, child care and health professionals, educators, media and consumers. ACI technical programs provide the foundation for scientifically sound public legislative and regulatory judgments about industry products and ingredients.

For more information, contact: The American Cleaning Institute (ACI)
1331 L Street NW, Suite 650, Washington, DC 20005
Tel: 202-347-2900 Fax: 202-347-4110 www.cleaninginstitute.org

This report was co-published by the following organization. For nonsubscriber sales information, contact:
The American Cleaning Institute (ACI)
1331 L Street NW, Suite 650, Washington, DC 20005
Tel: 202-347-2900 Fax: 202-347-4110 www.cleaninginstitute.org

© Copyright 2010 by the Water Environment Research Foundation and the American Cleaning Institute (ACI). All rights reserved. Permission to copy must be obtained from the Water Environment Research Foundation and the American Cleaning Institute (ACI). Printed in the United States of America

This report was prepared by the organization(s) named below as an account of work sponsored by the Water Environment Research Foundation (WERF) and the American Cleaning Institute (ACI). Neither WERF, ACUI, members of WERF, member of ACI, the organization(s) named below, nor any person acting on their behalf: (a) makes any warranty, express or implied, with respect to the use of any information, apparatus, method, or process disclosed in this report or that such use may not infringe on privately owned rights; or (b) assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report.

Colorado State University

The research on which this report is based was developed, in part, by the United States Environmental Protection Agency (EPA) through Cooperative Agreement No. X-830851-01 with the Water Environment Research Foundation (WERF). However, the views expressed in this document are not necessarily those of the EPA and EPA does not endorse any products or commercial services mentioned in this publication. This report is a publication of WERF, not EPA. Funds awarded under the Cooperative Agreement cited above were not used for editorial services, reproduction, printing, or distribution.

This document was reviewed by a panel of independent experts selected by WERF and ACI. Mention of trade names or commercial products or services does not constitute endorsement or recommendations for use. Similarly, omission of products or trade names indicates nothing concerning WERF’s, ACI’s, or EPA’s positions regarding product effectiveness or applicability.
ACKNOWLEDGMENTS

This research was funded in part by the American Cleaning Institute (ACI), U.S. Environmental Protection Agency (U.S. EPA), Canada Mortgage and Housing Corporation, Los Angeles Department of Power and Water, and the West Basin Municipal Water District through WERF’s Targeted Collaborative Research (TCR) program. The Research Team gratefully acknowledges these organizations for their support in making this research possible.

Research Team
Principal Investigators:
Sybil Sharvelle, Ph.D. (PI)
Larry Roesner, Ph.D. (Co-PI)
Colorado State University - Department of Civil and Environmental Engineering

Project Team:
Yaling Qian, Ph.D
Colorado State University - Horticulture and Landscape Architecture

Mary Stromberger, Ph.D.
Colorado State University - Soil and Crop Sciences

WERF Project Subcommittee
Drew C. McAvoy, Ph.D., Chair
Consultant, Procter and Gamble Company

Nicholas Ashbolt, Ph.D.
U.S. Environmental Protection Agency

Alvaro J. DeCarvalho
Consultant

Ali Harivandi, Ph.D.
University of California Cooperative Extension

Herschel A. Elliott, Ph.D., P.E.
Penn State University

WERF Project Steering Committee
Victoria Cross
City of Los Angeles Department of Power and Water

Kathleen Stanton
The Soap and Detergent Association

Raymond Ehrhard
Community Environmental Center - Washington University
Gus Meza
West Basin Municipal Water District

Cate Soroczan
Canada Mortgage and Housing Corporation

Water Environment Research Foundation Staff

Director of Research: Daniel M. Woltering, Ph.D.

Program Director: Jeff C. Moeller, P.E.
Background

As water supply becomes more limited throughout the world, there is a growing interest for innovative approaches to water resources sustainability. One approach that is gaining popularity is household graywater reuse for residential landscape irrigation. Graywater irrigation systems offer many benefits, however the use of such systems has not become widespread due to concerns about safety issues. While some states have begun to legalize and regulate the practice of graywater reuse for residential landscape, little guidance based on scientific data has been provided for the safe operation of graywater irrigation systems. Limited scientific data is available on the fate of graywater chemical and microbiological constituents and the effect of these constituents on plant health after graywater is applied for irrigation. The objective of this research project is to elucidate information on the fate and occurrence of graywater constituents and their potential impacts on soil quality, groundwater quality, and plant and human health as a result of its application for residential landscape irrigation.

Phase 1 of the project, a literature review and synthesis, was completed in March 2006 and is available from WERF. The final report contains a comprehensive synthesis of the current state of the knowledge on graywater reuse for landscape irrigation at the household level. The report also identifies information gaps for future research, a number of which are being addressed through Phase 2.

Phase 2 began in May 2008 and includes a series of experimental studies. The Phase 2 experimental studies are being conducted in three parts: existing household systems, new household systems, and greenhouse studies.

First, soil samples were collected from several household sites that used graywater for irrigation for more than five years and compared with analogous soil and landscaping that had been irrigated with potable water. The second part of the study targets new applications of graywater to several selected sites; the sites may be new construction, or retrofits to newer homes that already have landscaping in place. These sites are being operated in a controlled manner for one to two years to determine the dynamics of changes to soil and plant health that might occur due to graywater irrigation and the risk to human health in new systems. In addition to the field studies, a greenhouse experiment is being conducted. The goal of the greenhouse studies is to evaluate, in a scientifically controlled environment, the toxicity potential of graywater irrigation to annual bedding plants and turfgrasses and to examine the impact of graywater irrigation on groundwater quality by conducting leachate analysis.

This interim report presents data collected to date from the first of the three parts of the experimental studies – existing household sites. The results are from 18 months of data collection on four households with graywater irrigation systems in place for more than five years. Rather than waiting to release this data at the end of the project in 2012, this interim report makes this information available in order to help fill the current research gap in a timely manner. However, interpretation of results may change as more data becomes available as the project progresses through spring of 2012. Therefore, it is
important to note that conclusive recommendations on graywater irrigation cannot be made at this time.

Introduction

Data has been collected on plant health and soil quality from four homes that have had graywater irrigation systems in place from five years to 31 years at the time of sampling (Table 1). Homes included in the study are located in Bisbee, AZ, Escondido, CA, Fort Collins, CO, and Dallas, TX. These locations represent very different climatic and geographic conditions. The graywater systems at these homes varied from very simplistic to more complex with some treatment built into the system (Figures 1 through 4). For each site, a sample area was selected where graywater was applied for irrigation and a control area was also sampled with similar vegetation that had been irrigated with freshwater.

<table>
<thead>
<tr>
<th>Location</th>
<th>Duration of Graywater Irrigation</th>
<th>Source(s) of Graywater</th>
<th>System Description</th>
<th>Irrigation Method</th>
<th>Irrigation Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bisbee, AZ</td>
<td>6 years</td>
<td>Laundry, shower, handwash</td>
<td>Storage</td>
<td>Bucket</td>
<td>Manual application as needed</td>
</tr>
<tr>
<td>Escondido, CA</td>
<td>10 years</td>
<td>Laundry, shower, handwash</td>
<td>Storage, slow sand filter, pump</td>
<td>Submerged Drip</td>
<td>Daily</td>
</tr>
<tr>
<td>Fort Collins, CO</td>
<td>5 years</td>
<td>Laundry, shower, handwash</td>
<td>Storage, course filter, pump</td>
<td>Hose Application</td>
<td>Manual application as needed</td>
</tr>
<tr>
<td>Dallas, TX</td>
<td>31 years</td>
<td>Laundry</td>
<td>No storage, direct connect from washing machine</td>
<td>Hose Application</td>
<td>With operation of washing machine</td>
</tr>
</tbody>
</table>
Figure 1. Graywater System in Arizona Where Graywater is Collected in Buckets and Manually Applied to Plant Root Zones.

Figure 2. Graywater System in California Including a Sand Filtration Unit.
Summary of Plant Sensitivity to Graywater Irrigation

Plants were evaluated for the following criteria: crown density, dieback, foliage color, foliar burn, foliar necrosis, leaf size, insect and disease presence, and overall quality. For evergreen conifers, the researchers also collected data on the number of years of needle retention and year-to-year growth increments. Based upon the overall
evaluation, plants were classified for their relative tolerance levels to the use of graywater irrigation. Plants that exhibited some improvements or no changes under graywater irrigation were placed in very tolerant category. Plants that appeared healthy with only slight change in 1-2 evaluation criteria were placed in moderate tolerant category. Plants that exhibited small degree of decline were placed in moderate sensitive category whereas plants that exhibited significant decline were ranked as sensitive to graywater irrigation.

Our evaluations suggested that:

a. Juniper (*Juniperus spp.*), Euonymus (*Euonymus spp.*), Rose of Sharon (*Hisbiscus syriacus*), Chrysanthemum (*Chrysanthemum spp.*), and St. Augustine grass (*Stenotaphrum secundatum*) to be very tolerant to graywater irrigation (Figure 5).

b. The following plants exhibited moderate tolerance to graywater irrigation: California Valeriana (*Valeriana californica*) and Plum tree (*Prunus spp.*).

c. The following plants are moderately sensitive to graywater irrigation: Mugo pine (*Pinus mugho*) and Bearded iris (*Iris germanica*).

d. Landscape plants that are sensitive to graywater irrigation included: Scotch pine (*Pinus sylvestris*), Hass avocado (*Persea americana* ‘Hass’), and Lemon tree (*Citrus limonium*) (Figure 6).

No consistent trends were found regarding the influence of irrigation water source and individual leaf mineral content. The nature of the plant sensitivity is likely complex. Nevertheless one concern about the long-term use of graywater for landscape irrigation is the potential for salinity problems. The relationship between landscape plant salinity tolerance and their graywater response was assessed by comparing individuals plant salinity tolerance reported in the literature with the observations in this study. The regression coefficient (R^2) value of 0.36 suggest that the variance of landscape plant response to graywater cannot solely be attributed to plant response to salinity, in this case, salinity tolerance.
Figure 5. St. Augustine Grass (Upper Panel), Rose of Sharon (Middle Panel), and Euonymus Under Freshwater Irrigation (Left Panel) and Graywater Irrigation (Right Panel). These Plants Exhibited Some Improvements or No Changes under Graywater Irrigation.
Summary of Soil Quality

Salts

An important concern related to water reuse is the accumulation of sodium (Na) and other salts in soil, which could adversely affect soil quality and plant health. All soil samples were analyzed for Sodium Adsorption Ratio (SAR), calculated as a proportion of Na to Ca plus Mg in soil, and electrical conductivity (EC), which indicates salt concentration in soil. All soil samples collected for this study had a SAR below 5 (Figure 7) and an EC of 2 mmhos cm$^{-1}$ or less (Figure 8). The highest SAR and EC values were observed at the California household, where soils received manure as an amendment. With an EC value of 2, the California soil irrigated with potable water is considered very slightly saline, while the graywater-irrigated California soil and soils from CO and TX are considered non-saline (EC values < 2). In general, SAR values were slightly elevated in areas irrigated with graywater compared to freshwater among the households (except Colorado), although levels were not found to be high enough to cause concern for soil quality (Figure 7). For example, with a soil EC value of 2 mmhos cm$^{-1}$ or less (very slightly saline to non-saline), a soil would not be considered sodic (high enough in Na to harm soil quality and plant health) unless the SAR value was 13 or greater.

Excess sodium has been a known problem for reuse of reclaimed wastewater. As a comparison, SAR values in varying soil types irrigated with reclaimed wastewater have been found to range from 7.7 to 12.6 (Leal et al., 2009; Qian and Mecham, 2005) while SAR was lower than 3.5 in all samples irrigated with graywater collected for our study. Of note is that several soil types were included in our study; clay loam (Colorado soils and freshwater-irrigated Texas soil), loam (freshwater-irrigated California soil), sandy loam (graywater-irrigated California soil), and sandy clay loam (graywater-irrigated Texas soil). Other research (Gross et al., 2005) has also shown that after irrigation with graywater for three years, EC and SAR were not found to increase in native soils at levels.
which would affect plant health. This result has important implications in terms of the value of graywater for irrigation as compared to reclaimed wastewater. Interestingly, SAR is not necessarily higher in reclaimed wastewater compared to graywater. A review of the literature revealed that the SAR for reclaimed wastewater ranges from 3 - 11 and is typically lower than 8 while the SAR for graywater ranges from 3 - 6 (Wiel-Shafran et al., 2006; Gross et al., 2005; Finley et al., 2009).

![Figure 7. SAR in Soil Samples (0 – 15 cm) Collected from Households with Graywater Irrigation in Place for More Than Five Years.](image)

![Figure 8. EC in Soil Samples (0 – 15 cm) Collected from Households with Graywater Irrigation in Place for More Than Five Years.](image)
Surfactants

Another concern associated with the reuse of graywater is the fate of personal care product ingredients. Personal care products may migrate to groundwater or be transported in runoff after rainfall events. Surfactants, the primary ingredient in soaps and detergents, were measured in soil samples. Our analysis to this point has included linear alkyl benzene sulfonate (LAS), alkyl ethoxy sulfate (AES), and polyalcohol ethoxylate (PAE). Total surfactants were calculated by summing LAS, AES, and AE measured in soil samples (Figure 9). Surfactants were generally present at higher concentrations in graywater irrigated areas compared to areas irrigated with freshwater (Figure 9). The highest concentration of surfactants in surface soil (214 µg/kg) was measured at the household in Bisbee, AZ where very little vertical migration of water through soil was noted. The most relevant comparison for surfactants present in soils irrigated by graywater would be their presence in soils irrigated with reclaimed wastewater. Data is not available in the literature reporting surfactant concentrations in soils irrigated with reclaimed wastewater. However, data is available reporting LAS concentration in soil below tile field gravel where domestic septic effluent was dispersed. LAS was determined to be 7 mg/kg in soil 2.5 cm below the tile field gravel and was below the detection limit of 1 mg/kg at a depth of 5 cm below the tile field gravel (McAvoy et al, 1994). For our study, the highest observed concentration of LAS was 0.13 mg/kg in soil irrigated by graywater. Data is also available reporting surfactant concentration in soils amended with wastewater treatment plant biosolids. LAS concentration immediately after biosolids application was reported as high as 66 mg/kg and typically decreased to below 5 mg/kg within 12 months of application (Berna et al., 1989; Figge and Schoberl, 1989; Knaebel et al., 1990; Marcomini et al., 1989; Prats et al., 1993; Waters et al., 1989). Total surfactants were well below 66 mg/kg in soil samples collected from graywater irrigated areas, with the highest total surfactant concentration was 0.21 mg/kg. In comparison to soils receiving septic effluent or amended with biosolids, surfactants concentrations are lower in graywater irrigated soils.
Fecal Indicator Bacteria

Graywater contains fecal bacteria and other organisms, which could pose a risk to humans if pathogens are present in feces. The researchers therefore quantified several types of bacteria indicative of fecal contamination in soils irrigated with graywater or freshwater to determine the potential for graywater to add fecal bacteria to the environment. Measured indicator organisms included *Escherichia coli*, enterococci, and *Clostridium perfringens*. Numbers of *E. coli* were < 1 cell g⁻¹ soil in soil from Arizona and California and were greater in graywater-irrigated soil only in Texas (Figure 10). Across all four households, the average number (and standard deviation) of *E. coli* was 9 cells g⁻¹ soil (± 19) for freshwater-irrigated soil and 11 cells g⁻¹ soil (± 16) for graywater-irrigated soil, with no statistically significant effects of graywater irrigation (*P* = 0.80; paired t-test with α = 0.05).
Enterococci were detected in high numbers (relative to E. coli) for almost all soils (Figure 11). Enterococci numbers were greater in graywater-irrigated soil in California and Texas, but the opposite trend occurred in Arizona and Colorado, where enterococci were below detection limits (<1 cell g⁻¹ soil) in the graywater-irrigated soil. Across all four households, the average number (and standard deviation) of enterococci was 2,630 cells g⁻¹ soil (± 20) for freshwater-irrigated soil and 480 cells g⁻¹ soil (± 81) for graywater-irrigated soil, with no statistically significant effects of graywater irrigation ($P = 0.40$; paired t-test with $\alpha = 0.05$). *Clostridium perfringens* were below the limits of detection in all soils (<10 colony forming units g⁻¹ soil), except for the freshwater-irrigated soil in Texas, where *C. perfringens* was quantified as 300 colony forming units g⁻¹ soil.
Unlike for waters (marine, fresh, and drinking water), there are no regulatory standards for fecal indicator organisms in soil. However, the overall numbers (maximum of ~1,000 \(E.\) coli and ~100,000 enterococci per g soil) indicate that fecal indicator organisms at these households are probably a relatively minor component of the entire soil microbial community, as total bacteria typically range in the order of ten million to one billion cells per g soil. Overall, there were no consistent trends of graywater effects on fecal indicator organisms, likely because of highly variable conditions among households (climate, soil type, graywater composition, etc.) as well as confounding effects at individual households. For example, fecal indicator counts were likely affected by the presence of domestic animals or wildlife which defecated on the soils. This was particularly apparent at the Texas household, where free-range chickens and dogs were known to defecate on the graywater-treated area and may have contributed to the high numbers of \(E.\) coli and enterococci at this location. Others have found that high numbers of enterococci relative to \(E.\) coli may indicate wildlife as a source of fecal contamination, rather than anthropogenic sources (Fisher et al., 2000). This further supports the impact of animal influence at the TX household, and possibly the AZ and CA households as well.

Summary of Graywater Irrigation Systems

Several types of graywater irrigation systems which have been in place for more than five years were included in this study, one with submerged drip lines and three with
surface application of graywater (Table 1). Much debate exists over whether graywater irrigation distribution systems should be submerged underground or if surface application of graywater is acceptable. The household in CA included in this study had submerged drip irrigation lines and adhered to CA state regulations, which require that graywater irrigation systems are buried underground. Of note is that the depth to bedrock at this site was very low, typically less than 6”. Resurfacing of graywater was visually observed at the site. In cases where top soil is shallow, application of graywater below the ground surface may actually result in resurfacing of graywater compared to surface application systems. The primary concern for surface application is potential human contact with pathogens in the top layer of the soil. While indicator organism numbers were highly variable among the three households in the top 0 – 6” of soil, numbers of indicator organisms were not consistently greater in areas irrigated with graywater compared to areas irrigated with freshwater in any sites tested, including those where graywater was surface applied. It is not possible to make comparisons about risk associated with surface drip irrigation as compared to submerged application of graywater based on pathogen indicator organism numbers measured for this study. Indicator organism numbers were not consistently greater in the top 0 – 6” of soil in samples collected from sites where graywater was applied to the soil surface as compared to a site where graywater irrigation emitters were buried below the ground surface.

The results reported in this report are from 18 months of data collection on four households with graywater irrigation systems in place. Interpretation of results may change as more data becomes available as the project progresses through spring of 2012. Conclusive recommendations on graywater irrigation cannot be made at this time.

References

WASTEWATER UTILITY

Alabama
Montgomery Water Works & Sanitary Sewer Board

Alaska
Anchorage Water & Wastewater Utility

Arizona
Avondale, City of
Glendale, City of
Utilities Department
Mesa, City of
Peoria, City of
Phoenix Water Services Dept.
Pima County Wastewater Management
Safford, City of
Tempe, City of

Arkansas
Little Rock Wastewater Utility

California
Central Contra Costa Sanitary District
Corona, City of
Crestline Sanitation District
Delta Diablo Sanitation District
Dublin San Ramon Services District
East Bay Dischargers Authority
East Bay Municipal Utility District
El Dorado Irrigation District
Fairfield-Suisun Sewer District
Fresno Department of Public Utilities
Inland Empire Utilities Agency
Irvine Ranch Water District
Las Gallinas Valley Sanitary District
Las Virgenes Municipal Water District
Livermore, City of
Los Angeles, City of
Los Angeles County, Sanitation Districts of
Napa Sanitation District
Novato Sanitary District
Orange County Sanitation District
Palo Alto, City of
Riverside, City of
Sacramento Regional County Sanitation District
San Diego Metropolitan Wastewater Department, City of
San Francisco, City & County of
San Jose, City of
Santa Barbara, City of
Santa Cruz, City of
Santa Rosa, City of
South Bayside System Authority
South Coast Water District

South Orange County Wastewater Authority
South Tahoe Public Utility District
Stege Sanitary District
Sunnyvale, City of
Union Sanitary District
West Valley Sanitation District

Colorado
Aurora, City of
Boulder, City of
Greeley, City of
Littleton/Englewood Water Pollution Control Plant
Metro Wastewater Reclamation District, Denver

Connecticut
Greater New Haven WPCA
Stamford, City of

District of Columbia
District of Columbia Water & Sewer Authority

Florida
Broward, County of
Fort Lauderdale, City of
Jacksonville Electric Authority (JEA)
Miami-Dade Water & Sewer Authority
Orange County Utilities Department
Pinellas, County of
Reedy Creek Improvement District
Seminole County Environmental Services
St. Petersburg, City of
Tallahassee, City of
Tahoe Water Authority
West Palm Beach, City of

Georgia
Atlanta Department of Watershed Management
Augusta, City of
Clayton County Water Authority
Cobb County Water System
Columbus Water Works
Fulton County
Gwinnett County Department of Public Utilities
Savannah, City of

Hawaii
Honolulu, City & County of

Idaho
Boise, City of

Illinois
Decatur, Sanitary District of
Greater Peoria Sanitary District
Kankakee River Metropolitan Agency
Metropolitan Water Reclamation District of Greater Chicago
Wheaton Sanitary District

Indiana
Jeffersonville, City of
Ames, City of
Cedar Rapids Wastewater Facility
Des Moines, City of
Iowa City

Kansas
Johnson County Wastewater Unified Government of Wyandotte County/
Kansas City, City of

Kentucky
Louisville & Jefferson County Metropolitan Sewer District
Sanitation District No. 1

Louisiana
Sewerage & Water Board of New Orleans

Maine
Bangor, City of
Portland Water District

Maryland
Anne Arundel County Bureau of Utility Operations
Howard County Bureau of Utilities
Washington Suburban Sanitary Commission

Massachusetts
Boston Water & Sewer Commission
Massachusetts Water Resources Authority (MWRA)
Upper Blackstone Water Pollution Abatement District

Michigan
Ann Arbor, City of
Detroit, City of
Holland Board of Public Works
Saginaw, City of
Wayne County Department of Environment
Wyoming, City of

Minnesota
Rochester, City of
Western Lake Superior Sanitary District

Missouri
Independence, City of
Kansas City Missouri Water Services Department
Little Blue Valley Sewer District
Metropolitan St. Louis Sewer District

Nebraska
Lincoln Wastewater & Solid Waste System

Nevada
Henderson, City of
Las Vegas, City of
Reno, City of

New Jersey
Berger County Utilities Authority
Ocean County Utilities Authority

New York
New York City Department of Environmental Protection

North Carolina
Charlotte/Mecklenburg Utilities
Durham, City of
Metropolitan Sewerage District of Buncombe County
Orange Water & Sewer Authority
University of North Carolina, Chapel Hill

Ohio
Akron, City of
Butler County Department of Environmental Services
Columbus, City of
Metropolitan Sewer District of Greater Cincinnati
Montgomery, County of
Northeast Ohio Regional Sewer District
Summit, County of

Oklahoma
Oklahoma City Water & Wastewater Utility Department
Tulsa, City of

Oregon
Albany, City of
Clean Water Services
Eugene, City of
Gresham, City of
Portland, City of
Bureau of Environmental Services
Lake Oswego, City of
Oak Lodge Sanitary District
Water Environment Services

Pennsylvania
Hemlock Municipal Sewer Cooperative (HMSC)
Philadelphia, City of
University Area Joint Authority

South Carolina
Charleston Water System
Mount Pleasant Waterworks & Sewer Commission
Spartanburg Water

Tennessee
Cleveland Utilities
Murfreesboro Water & Sewer Department
Nashville Metro Water Services

Texas
Austin, City of
Dallas Water Utilities
Denton, City of
El Paso Water Utilities
WERF Board of Directors

Chair
Alan H. Vicory, Jr., P.E., BCEE
Ohio River Valley Water Sanitation Co

Vice-Chair
William P. Dee, P.E., BCEE
Malcolm Pirnie, Inc.

Secretary
William J. Bertera
Water Environment Federation

Treasurer
Jeff Taylor
Freese and Nichols, Inc.

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patricia J. Anderson, P.E.</td>
<td>Florida Department of Health</td>
</tr>
<tr>
<td>Jeanette A. Brown, P.E., BCEE, D.WRE</td>
<td>Stamford Water Pollution Control Authority</td>
</tr>
<tr>
<td>Catherine R. Gerali</td>
<td>Metro Wastewater Reclamation District</td>
</tr>
<tr>
<td>Charles N. Haas, Ph.D., BCEEM</td>
<td>Drexel University</td>
</tr>
<tr>
<td>Stephen R. Maguin</td>
<td>Sanitation Districts of Los Angeles County</td>
</tr>
<tr>
<td>Karen L. Pallansch, P.E., BCEE</td>
<td>Alexandria Sanitation Authority</td>
</tr>
<tr>
<td>Robert A. Reich, P.E.</td>
<td>DuPont Company</td>
</tr>
<tr>
<td>R. Rhodes Trussell, Ph.D., P.E.</td>
<td>Trussell Technologies Inc.</td>
</tr>
<tr>
<td>Rebecca F. West</td>
<td>Spartanburg Water</td>
</tr>
<tr>
<td>Brian L. Wheeler</td>
<td>Toho Water Authority</td>
</tr>
<tr>
<td>Joseph E. Zuback</td>
<td>Global Water Advisors, Inc.</td>
</tr>
</tbody>
</table>

Executive Director
Glenn Reinhardt

WERF Research Council

Chair
Karen L. Pallansch, P.E., BCEE
Alexandria Sanitation Authority

Vice-Chair
John B. Barber, Ph.D.
Eastman Chemical Company

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>William J. Cooper, Ph.D.</td>
<td>University of California-Irvine</td>
</tr>
<tr>
<td>Ann Farrell, P.E.</td>
<td>Central Contra Costa Sanitary District (CCCSD)</td>
</tr>
<tr>
<td>Robbin W. Finch</td>
<td>Boise, City of</td>
</tr>
<tr>
<td>Thomas Granato, Ph.D.</td>
<td>Metropolitan Water Reclamation District of Greater Chicago</td>
</tr>
<tr>
<td>James A. Hanlon</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>James A. Hodges, CPEng.</td>
<td>Watercare Services Limited</td>
</tr>
<tr>
<td>David Jenkins, Ph.D.</td>
<td>University of California at Berkeley</td>
</tr>
<tr>
<td>Terry L. Johnson, Ph.D., P.E., BCEE</td>
<td>Black & Veatch Corporation</td>
</tr>
<tr>
<td>Beverley M. Stinson, Ph.D. AECOM</td>
<td>New England Interstate Water Pollution Control Commission (NEWPCC)</td>
</tr>
<tr>
<td>Susan J. Sullivan</td>
<td></td>
</tr>
</tbody>
</table>
WERF Product Order Form

As a benefit of joining the Water Environment Research Foundation, subscribers are entitled to receive one complimentary copy of all final reports and other products. Additional copies are available at cost (usually $10). To order your complimentary copy of a report, please write “free” in the unit price column. WERF keeps track of all orders. If the charge differs from what is shown here, we will call to confirm the total before processing.

Name

Title

Organization

Address

City

State

Zip Code

Country

Phone

Fax

Email

<table>
<thead>
<tr>
<th>Stock #</th>
<th>Product</th>
<th>Quantity</th>
<th>Unit Price</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method of Payment: (All orders must be prepaid.)

- [] Check or Money Order Enclosed
- [] Visa
- [] Mastercard
- [] American Express

Account No. Exp. Date

Signature

Shipping & Handling:

<table>
<thead>
<tr>
<th>Amount of Order</th>
<th>United States</th>
<th>Canada & Mexico</th>
<th>All Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to but not more than:</td>
<td>Add:</td>
<td>Add:</td>
<td>Add:</td>
</tr>
<tr>
<td>$20.00</td>
<td>$7.50*</td>
<td>$9.50</td>
<td>50% of amount</td>
</tr>
<tr>
<td>30.00</td>
<td>8.00</td>
<td>9.50</td>
<td>40% of amount</td>
</tr>
<tr>
<td>40.00</td>
<td>8.50</td>
<td>9.50</td>
<td></td>
</tr>
<tr>
<td>50.00</td>
<td>9.00</td>
<td>18.00</td>
<td></td>
</tr>
<tr>
<td>60.00</td>
<td>10.00</td>
<td>18.00</td>
<td></td>
</tr>
<tr>
<td>80.00</td>
<td>11.00</td>
<td>18.00</td>
<td></td>
</tr>
<tr>
<td>100.00</td>
<td>13.00</td>
<td>24.00</td>
<td></td>
</tr>
<tr>
<td>150.00</td>
<td>15.00</td>
<td>35.00</td>
<td></td>
</tr>
<tr>
<td>200.00</td>
<td>18.00</td>
<td>40.00</td>
<td></td>
</tr>
</tbody>
</table>

More than $200.00: Add 20% of order

*Minimum amount for all orders

Make checks payable to the Water Environment Research Foundation.

To Order (Subscribers Only):

Log on to www.werf.org and click on “Publications.”

Phone: 571-384-2100
Fax: 703-299-0742

WERF
Attn: Subscriber Services
635 Slaters Lane
Alexandria, VA 22314-1177

To Order (Non-Subscribers):

Non-subscribers may order WERF publications either through WERF or IWAP (www.iwapublishing.com).

Visit WERF’s website at www.werf.org for details.